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Anomalous diffusion and the first passage time problem
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Department of Mathematics and Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012, India

Mingzhou Ding†
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We study the distribution of the first passage time~FPT! in Levy type anomalous diffusion. Using the
recently formulated fractional Fokker-Planck equation we obtain three results.~1! We derive an explicit
expression for the FPT distribution in terms of Fox orH functions when the diffusion has zero drift.~2! For the
nonzero drift case we obtain an analytical expression for the Laplace transform of the FPT distribution.~3! We
express the FPT distribution in terms of a power series for the case of two absorbing barriers. The known
results for ordinary diffusion~Brownian motion! are obtained as special cases of our more general results.

PACS number~s!: 05.40.Fb, 05.40.Jc, 05.60.Cd
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I. INTRODUCTION

For a stochastic process, the first passage time~FPT! is
defined as the timeT when the process, starting from a give
point, reaches a predetermined level for the first time, an
a random variable@1–4#. In this paper, we consider the dis
tribution of the FPT in the context of anomalous diffusio
By anomalous diffusion we mean a process where the m
square displacement of the diffusive variableX(t) scales
with time as^X2(t)&;tg with 0,g,2. If g51, we obtain
ordinary diffusion. There are different mechanisms for ge
erating anomalous diffusion. Our focus will be on the co
tinuous time random walk~CTRW! @5,6#, where the waiting
time is a Levy type variable obeying certain power law d
tribution. We subsequently refer to the process as Levy t
anomalous diffusion. Recent work shows that in the gen
alized diffusive limit the probability density function of th
CTRW is described by a fractional Fokker-Planck equat
~FFPE! @7,8#. Using this equation, together with appropria
initial and boundary value condition, we derive an exact
lution for the FPT density function in terms of Fox orH
functions @9,10#, when the anomalous diffusion has ze
drift. For the nonzero drift case we derive an expression
the Laplace transform of the FPT density function. Th
Laplace transform is then used to obtain the mean and v
ance of the FPT. Finally, we derive an explicit expression
the FPT density function for Levy type anomalous diffusi
with absorbing barriers at finite distances from the origin

II. LEVY TYPE ANOMALOUS DIFFUSION

For an ordinary diffusive process, the mean square
placement scales witht as ^X2(t)&;t in the larget limit. If
^X2(t)&;tg, we have anomalous diffusion, with 0,g,1
and 1,g,2 corresponding to subdiffusive and superdiff
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sive cases, respectively. Anomalous diffusion with dr
Xm(t) is defined by

Xm~ t !5mt1X~ t !. ~2.1!

For further discussions and examples of anomalous di
sions in physical, chemical, and biological systems, see R
@5,6#. For completeness we give in what follows a brief i
troduction to CTRW and the limiting process leading to t
establishment of the FFPE.

A. Details of the process

We start with a one-dimensional continuous time rand
walk described by the following Langevin equation:

dX

dt
5(

i 51

`

Yid~ t2t i !. ~2.2!

Here the random walker starts atx50 at timet050. Subse-
quently, the random walker waits at a given locationxi for
time t i2t i 21 before taking a jumpYi which could depend on
the waiting time. The waiting timeu.0 and the jump sizey
(2`,y,`) are drawn from the joint probability densit
functionf(y,u). The waiting time distributionc(u) is given
by

c~u!5E
2`

`

dy f~y,u!. ~2.3!

The process is non-Markovian ifc(u) is a nonexponentia
distribution, since the probability for the next jump to occ
depends on how long the random walker has been wai
since the previous jump. But the CTRW is non-Markovian
a special way, since it does not depend on the history of
process prior to the previous jump.

It can be shown@5# that the probability distribution
W(x,t) for the CTRW is related tof(y,u) andc(u). This
relation is simpler to write down in the Fourier-Laplac
transform space. Denoting the Fourier-Laplace transform
W(x,t) and f(y,u) by W̃(k,s) and f̃(k,s), respectively

d
s:
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PRE 62 121ANOMALOUS DIFFUSION AND THE FIRST PASSAGE . . .
~wherek is the Fourier transform of the space variable, ans
the Laplace transform of the time variable!, we have@5#

W̃~k,s!5
1

s

12c̃~s!

12f̃~k,s!
. ~2.4!

Here c̃(s) is the Laplace transform ofc(u).
It can be further shown, depending on the specific form

f(y,u), that the CTRW can produce both subdiffusive
,g,1) and superdiffusive processes (1,g,2) as well as
ordinary diffusion (g51) @5,11#. For example, consider

f~y,u!5
1

A2ps2
exp@2y2/2s2#

~a21!/t

~11u/t!a
, ~2.5!

wherey andu are decoupled withy being a Gaussian vari
able with zero mean. For 1,a,2, the corresponding
CTRW is characterized by a subdiffusive process withg
5a21, and fora>2, one obtains ordinary diffusion with
g51. This is demonstrated as follows.

The waiting time distributionc(u) is given by@cf. Eqs.
~2.5! and ~2.3!#

c~u!5
~a21!/t

~11u/t!a
. ~2.6!

Even though this is not a Levy stable distribution, it belon
to the domain of attraction@12# of a one-sided stable Lev
law. It has an infinite mean for 1,a,2, the range we are
interested in~it has a finite mean fora.2). We call u a
‘‘Levy type variable’’ for want of a better name. Th
Laplace transformc̃(s) of c(u) is @13#

c̃~s!5~a21!~ts!a21G~12a,ts!ets. ~2.7!

The Fourier-Laplace transformf̃(k,s) of f(y,u) in Eq.
~2.5! is given by@13#

f̃~k,s!5exp~2s2k2/2!c̃~s!. ~2.8!

To show that the CTRW characterized by Eq.~2.5! exhib-
its anomalous diffusion, we need to demonstrate t
^X2(t)&;tg for larget(0,g,1). By the Tauberian theorem
@14#, this is equivalent tô X2(s)&;1/s11g for small s(0
,g,1). But we have the result

^X2~s!&52
]2

]k2
W̃~k,s!U

k50

. ~2.9!

Thus we need the expression forW(k,s) in the limit s→0.
Since W(k,s) is a function of c̃(s) and f̃(k,s) @cf. Eq.
~2.4!#, we first considerc̃(s). We have@15#

G~12a,ts!5G~12a!2 (
n50

`
~21!n~ts!12a1n

n! ~12a1n!
.

~2.10!

As s→0,
f

s

t

G~12a,ts!'2
G~22a!

a21
1

~ts!12a

a21
1

~ts!22a

22a
.

~2.11!

Thereforec̃(s), ass→0, is given by

c̃~s!'12G~22a!~ts!a21, 1,a,2, ~2.12!

'12~2a23!ts/~a22!, a.2.
~2.13!

Substituting this into Eq.~2.4! we have@cf. Eq. ~2.8!#

W̃~k,s!'
1

s

G~22a!~ts!a21

12@12G~22a!~ts!a21#exp~2s2k2/2!
,

1,a,2, ~2.14!

'
1

s

ats/~a22!

12@12ats/~a22!#exp~2s2k2/2!
,

a.2. ~2.15!

Using this in Eq.~2.9! and evaluating the second derivativ
at k50, in the limit s→0 we obtain

^X2~s!&;
s2

G~22a!ta21

1

sa
, 1,a,2, ~2.16!

;
~a22!s2

at

1

s2
, a.2. ~2.17!

Thus we have shown that the CTRW characterized by
~2.5! is a subdiffusive process for 1,a,2 with g5a21,
and, fora.2, one obtains ordinary diffusion withg51. For
a52, by taking proper limits, one can show that we aga
obtain ordinary diffusion.

We verify the above result numerically by simulating th
CTRW process. For the sake of numerical efficiency,
replace the waiting time distributionc(u) in Eq. ~2.6! by the
Pareto distribution@16#

c~u!50, u,t, ~2.18!

5
~a21!ta21

ua
, u>t.

~2.19!

This approximation is well justified for small values oft. A
numerically obtained mean square displacement is comp
with the theoretical prediction in Fig. 1 fora51.5 ~i.e., g
50.5), a51.0, t51024, ands253.531023. We note that
the numerical simulation is in excellent agreement with
theoretical prediction.

If, on the other hand,f(y,u) is given by the coupled
distribution @5#

f~y,u!5
1

2
d~u/t2uyu/s!

~b21!/t

~11u/t!b
, ~2.20!
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122 PRE 62GOVINDAN RANGARAJAN AND MINGZHOU DING
where 2,b,3 and d(•) is the Dirac delta function, the
CTRW describes a superdiffusive process withg5b21.
This can be seen as follows.

Proceeding as before, the waiting time distributionc(u)
is given by@cf. Eqs.~2.20! and ~2.3!#

c~u!5
~b21!/t

~11u/t!b
. ~2.21!

It has a finite mean but an infinite variance for 2,b,3. Its
Laplace transform in the limits→0 is given by

c̃~s!'12~2b23!ts/~b22!. ~2.22!

The Fourier-Laplace transformf̃(k,s) of f(y,u) in Eq.
~2.20! is given by~in the limit s→0 andk!s)

f̃~k,s!'c̃~s!2
~b21!G~32b!

2
k2s2~ts!b23.

~2.23!

Substitutingc̃(s) and f̃(k,s) into Eq. ~2.4! we obtain

W̃~k,s!'Fs1
~b21!~b22!G~32b!

2~2b23!
k2s2~ts!b23G21

.

~2.24!

Using this in Eq.~2.9! and evaluating the second derivativ
at k50, in the limit s→0 we obtain

^X2~s!&'
~b21!~b22!G~32b!

~2b23!

1

s52b
. ~2.25!

By the Tauberian theorem@14#, this is equivalent to
^X2(t)&;t42b. Thus the CTRW characterized by Eq.~2.20!
is a superdiffusive process for 2,b,3, with g542b(1
,g,2).

Note that there are several other possible forms
f(y,u), which also give rise to subdiffusive and superdiff
sive behaviors. See Ref.@5# for a detailed discussion.

FIG. 1. A log-log plot of the mean squared displacement
tained by numerically simulating the underlying CTRW process
a Levy type anomalous diffusion withg50.5.
r

B. Fractional Fokker-Planck equation for Levy type
anomalous diffusion

In Sec. II A, we described CTRW processes that give r
to Levy type anomalous diffusion. However, it is difficult t
derive analytical results directly from the process. It is mo
convenient to work in the general framework of Fokke
Planck equations@1#. One can go from the CTRW process
a fractional Fokker-Planck equation@8# by taking the gener-
alized diffusion limit. This limit is analogous to the regula
diffusion limit that one considers to derive the regul
Fokker-Planck equation@1# from a random walk with
^X2(t)&;t for larget. In the regular diffusion limit, one lets
s,t→0, such thats2/t is maintained a constant. For
CTRW where^X2(t)&;tg(0,g,2), the generalized diffu-
sion limit is obtained by taking the limits,t→0 such that
s2/tg is maintained a constant.

Thus to obtain a FFPE from the CTRW process, we ne
to take the limit s,t→0. We will take this limit for the
Fourier-Laplace transformW̃(k,s) of W(x,t), and then in-
vert the transform to obtain the FFPE. First consider
subdiffusive CTRW characterized by Eq.~2.5!. In Sec. II A,
we already derived an expression forW̃(k,s) in the limit s
→0 ~which is equivalent to the limitt→0 that we now
require!:

W̃~k,s!'
1

s

G~12g!~ts!g

12@12G~12g!~ts!g#exp~2s2k2/2!
.

~2.26!

Here we have usedg5a21(0,g,1) instead ofa, since it
is the physically relevant quantity. Now we take the furth
limit s→0 such thats2/2G(12g)tg5K is a constant.K is
called the generalized diffusion constant. We then obtain

W̃~k,s!5
1

s1Kk2s12g
. ~2.27!

This can be rewritten as

W̃~k,s!2
1

s
52Kk2s2gW̃~k,s!. ~2.28!

To take the inverse Fourier-Laplace transform of the ab
equation, we need the inverse Laplace transform
s2gW̃(k,s). This is given by the Riemann-Liouville frac
tional integral 0Dt

2gW(k,t), which is defined as@17,18#

0Dt
2gW~k,t !5

1

G~g!
E

0

t

dt8~ t2t8!g21W~k,t8!, g.0.

~2.29!

This result enables us to take the inverse Fourier-Lapl
transform of Eq.~2.28!, giving @7,8#

W~x,t !2W~x,0!5K 0Dt
2g ]2

]x2
W~x,t !, 0,g,1.

~2.30!

Here we have incorporated the initial conditionW(x,0)
5d(x).

-
r
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PRE 62 123ANOMALOUS DIFFUSION AND THE FIRST PASSAGE . . .
Next we consider the superdiffusive CTRW process ch
acterized by Eq.~2.20!. We have already derived an expre
sion for W̃(k,s) in the limit k,s→0 ~which is equivalent to
the limit s,t→0 that we now require!:

W̃~k,s!'Fs1
~32g!~22g!G~g21!

2~522g!
k2s2~ts!12gG21

.

~2.31!

This expression is valid in the regimes!t. Taking the gen-
eralized diffusion limit, we again obtain Eq.~2.28!, but now
K5(32g)(22g)G(g21)s2/2(522g)tg and 1,g,2.
Therefore, this superdiffusive CTRW process also gives
~2.30! with the aboveK and 1,g,2.

To summarize, a class of Levy type anomalous diffus
can be described by the following FFPE in the generali
diffusion limit:

W~x,t !2W~x,0!5K 0Dt
2g ]2

]x2
W~x,t !, 0,g,2.

~2.32!

HereK has different expressions for 0,g,1 and 1,g,2,
as described above. We note that there are other CTRW
cesses which may give rise to different FFPE’s. In this pap
we consider only the FFPE given in Eq.~2.32!. The above
FFPE describes Levy type anomalous diffusion with z
drift. For anomalous diffusion with driftm, the above FFPE
can be generalized to give@7#

W~x,t !2W~x,0!5K 0Dt
2g ]2

]x2
W~x,t !2m0Dt

21 ]

]x
W~x,t !,

~2.33!

where 0,g,2. We also note that forg51, the above FFPE
reduces to the regular Fokker-Planck equation describ
Brownian motion.

We now show that this FFPE gives the correct mome
The natural boundary conditions for the FFPE are

W~2`,t !5W~`,t !50, W~x,0!5d~x!. ~2.34!

First we computê Xm&. Multiplying the FFPE given in Eq.
~2.33! by x, and integrating fromx52` to x5`, we obtain

^Xm&5m 0Dt
21E

2`

`

dx W~x,t !2K 0Dt
2gE

2`

`

dx
]W~x,t !

]x
,

~2.35!

where we have performed integration by parts and assu
that xW(x,t)50 andx@]W(x,t)/]x#50 at x56`. Evalu-
ating the remaining integrals using the natural boundary c
ditions and the normalization integral*2`

` dx W(x,t)51, we
obtain

^Xm&5m 0Dt
21~1!5mt. ~2.36!

This is the expected result.
Next we compute Var@Xm#. Multiplying the FFPE in Eq.

~2.33! by x2, and integrating, we obtain
r-

q.

n
d

ro-
r,

o

g

s.

ed

n-

^Xm
2 &52m 0Dt

21E
2`

`

dx xW~x,t !

22K 0Dt
2gE

2`

`

dx x
]W~x,t !

]x
, ~2.37!

where we have again used integration by parts and assu
that x2W(x,t)50 and x2@]W(x,t)/]x#50 at x56`.
Evaluating the remaining integrals using the fact th
*2`

` dx xW(x,t)5^Xm&5mt and the boundary and norma
ization conditions, we obtain

^Xm
2 &52m2

0Dt
21~ t !12K 0Dt

2g~1!. ~2.38!

But 0Dt
21(t)5t2/2 and 0Dt

2g(1)5tg/G(g11) @18#. There-
fore,

^Xm
2 &5m2t21

2Ktg

G~g11!
. ~2.39!

The variance Var@Xm# is given by^Xm
2 &2^Xm&2. Hence

Var@Xm#5
2Ktg

G~g11!
. ~2.40!

Thus we see that our FFPE gives the correct moments.

III. FIRST PASSAGE TIME PROBLEM FOR LEVY TYPE
ANOMALOUS DIFFUSION

We now formulate the first passage time problem for
FFPE given in Eq.~2.33! describing Levy type anomalou
diffusion with drift. Consider a stochastic processX(t) with
X(0)50. The first passage time~FPT! T to the pointX5a is
defined as@19#

T5 inf$t:X~ t !5a%. ~3.1!

We would like to obtain the probability density function fo
T. This is the first passage time problem.

For a process described by Fokker-Planck equations,
problem of obtaining the FPT density function can be rec
as a boundary value problem with absorbing boundaries@1#.
In our case, to obtain the FPT density function, we first ne
to solve Eq.~2.33! with absorbing boundaries atx52` and
x5a, wherea is the predetermined level of crossing, wi
the initial conditionW(x,0)5d(x) @1#. An equivalent formu-
lation, due to symmetry, is to solve Eq.~2.33!, with the
boundary and initial conditions

W~0,t !50, W~`,t !50, W~x,0!5d~x2a!, ~3.2!

wherex5a is the new starting point of the CTRW, contain
ing the initial concentration of the distribution. The equiv
lence is easily seen by making the change of variablex
→a2x in Eq. ~2.33!. The only change is in the interpreta
tion of m. Now m,0 corresponds to a drift toward the ba
rier. This latter formulation makes the subsequent derivat
less cumbersome. Once we solve forW(x,t), the first pas-
sage time densityf (t) is given by@1#
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f ~ t !52
d

dt E0

`

dx W~x,t !. ~3.3!

In the following subsections, we obtain the FPT dens
function for Levy type anomalous diffusion under differe
conditions.

A. Zero drift case

In this section, we obtain an explicit solution for the FP
density for a zero drift Levy type anomalous diffusion
terms ofH functions @9,10,20#. Asymptotic expressions fo
the FPT density in various limits are obtained. Numeri
simulations are performed to confirm the above results.

Settingm50 in Eq. ~2.33!, we obtain

W~x,t !2W~x,0!5K 0Dt
2g ]2

]x2
W~x,t !. ~3.4!

Taking into account the boundary and initial conditions@cf.
Eq. ~3.2!#, we are led to the following expansion forW(x,t)
@21#:

W~x,t !5
2

pE0

`

dk sinkx sinkaA~k,t !, ~3.5!

with A(k,0)51. To determine the unknown functionA(k,t),
we substitute the above expansion forW(x,t) in Eq. ~3.4!
and, after straightforward algebra, obtainA(k,t)215
2Kk2

0Dt
2gA(k,t). Taking the Laplace transform with re

spect tot, we have

A~k,s!5
1

s1k2Ks12g
, ~3.6!

whereA(k,s) is the Laplace transform ofA(k,t). Here we
have applied the result@18# that the Laplace transform o

0Dt
2gA(k,t) is A(k,s)/sg.
Inverse Laplace transform of Eq.~3.6! yields @22#

A~k,t !5Eg~2k2Ktg!, ~3.7!

whereEg(z) is the Mittag-Leffler function@22#. The Mittag-
Leffler function can be defined by the following power ser
expansion:

Eg~z!5 (
n50

`
zn

G~ng11!
. ~3.8!

Wheng51, the Mittag-Leffler function reduces to the usu
exponential functionez. Substituting Eq.~3.7! into Eq.~3.5!,
we obtain

W~x,t !5
2

pE0

`

dk sinkx sinkaEg~2k2Ktg!. ~3.9!

To proceed further, we introduce the Fox orH function
@9,10,20# which has the following alternating power seri
expansion:
y

l

l

Hp,q
m,nS zU~aj ,Aj ! j 51, . . . ,p

~bj ,Bj ! j 51, . . . ,q
D

5(
l 51

m

(
k50

`
~21!kzslk

k!Bl

3

)
j 51,j Þ l

m

G~bj2Bjslk!)
r 51

n

G~12ar1Arslk!

)
u5m11

q

G~12bu1Buslk! )
v5n11

p

G~av2Avslk!

,

~3.10!

whereslk5(bl1k)/Bl and an empty product is interprete
as unity. Further,m, n, p, and q are non-negative integer
such that 0<n<p and 1<m<q; Aj and Bj are positive
numbers;aj andbj can be complex numbers. We will deno
theH function byHp,q

m,n(z) for the sake of notational simplic
ity wherever this does not lead to any confusion. TheH
function has several remarkable properties, some of wh
are listed in the Appendix.

Returning to our problem, by comparing the series exp
sion @cf. Eq. ~3.8!# of the Mittag-Leffler functionEg(z) with
that of theH function @cf. Eq. ~3.10!#, we see that

Eg~2z!5H1,2
1,1S zU~0,1!

~0,1!, ~0,g!
D . ~3.11!

Substituting this into Eq.~3.9!, we obtain

W~x,t !5
2

pE0

`

dk sinkx sinkaH1,2
1,1S k2KtgU~0,1!

~0,1!, ~0,g!
D .

~3.12!

Letting k85k(Ktg)1/2, the above equation becomes

W~x,t !5
2

p~Ktg!1/2

3E
0

`

dk8sink8x sink8a

3H1,2
1,1S ~k8!2U~0,1!

~0,1!, ~0,g!
D . ~3.13!

Using property 5@Eq. ~A4!# of the H functions to replace
(k8)2 by k8, we obtain

W~x,t !5
1

p~Ktg!1/2

3E
0

`

dk8sink8x sink8a

3H1,2
1,1S k8U~0,1/2!

~0,1/2!, ~0,g/2!
D . ~3.14!

The above equation can be rewritten as follows, mak
use of the standard trigonometric identity 2 sink8xsink8a
5cosk8(x2a)2cosk8(x1a):
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W~x,t !5
1

2p~Ktg!1/2E0

`

dk8@cosk8~x2a!

2cosk8~x1a!#H1,2
1,1S k8U~0,1/2!

~0,1/2!, ~0,g/2!
D .

~3.15!

The above Fourier cosine transforms can be solved by
cessive applications of a Laplace and an inverse Lap
transform~a technique pioneered by Fox@23# for solving a
wide variety of integral transforms! to give @20#

W~x,t !5
1

2ux2au

3H3,3
2,1S ux2au

~Ktg!1/2U~1,1/2!, ~1,g/2!, ~1,1/2!

~1,1!, ~1,1/2!, ~1,1/2!D
2

1

2~x1a!

3H3,3
2,1S x1a

~Ktg!1/2U~1,1/2!, ~1,g/2!, ~1,1/2!

~1,1!, ~1,1/2!, ~1,1/2!D .

~3.16!

Now, applying property 2@cf. Eq. ~A1!# of the H func-
tions to reduce the order of ourH function, we obtain

W~x,t !5
1

2ux2au
H2,2

2,0S ux2au

~Ktg!1/2U~1,g/2!, ~1,1/2!

~1,1!, ~1,1/2!D
2

1

2~x1a!
H2,2

2,0S x1a

~Ktg!1/2U~1,g/2!, ~1,1/2!

~1,1!, ~1,1/2!D .

~3.17!

Applying properties 1 and 3@cf. Eq. ~A2!# of the H func-
tions, we can further reduce the order of ourH function:

W~x,t !5
1

2ux2au
H1,1

1,0S ux2au

~Ktg!1/2U~1,g/2!

~1,1! D
2

1

2~x1a!
H1,1

1,0S x1a

~Ktg!1/2U~1,g/2!

~1,1! D . ~3.18!

Applying property 6@cf. Eq. ~A5!# of the H functions with
z5ux2au ~or z5x1a) andr521, we finally obtain

W~x,t !5
1

2~Ktg!1/2FH1,1
1,0S ux2au

~Ktg!1/2U~12g/2,g/2!

~0,1! D
2H1,1

1,0S x1a

~Ktg!1/2U~12g/2,g/2!

~0,1! D G . ~3.19!

Substituting Eq.~3.19! into Eq. ~3.3!, we have
c-
ce

f ~ t !52
d

dt F 1

2~Ktg!1/2

3E
0

`

dx H1,1
1,0S ux2au

~Ktg!1/2U~12g/2,g/2!

~0,1! D G
1

d

dTF 1

2~Ktg!1/2

3E
0

`

dx H1,1
1,0S x1a

~Ktg!1/2U~12g/2,g/2!

~0,1! D G .

~3.20!

Defining z5(x2a)/(KTg)1/2 and z85(x1a)/(KTg)1/2, we
obtain

f ~ t !52
d

dtE2a/(Ktg)1/2

`

dz H1,1
1,0S uzuU~12g/2,g/2!

~0,1!
D

1
d

dtEa/(Ktg)1/2

`

dz8H1,1
1,0S z8U~12g/2,g/2!

~0,1!
D .

~3.21!

Evaluating the above equation~which is easily done since
the only t dependence is in the limits of the integrals!, we
obtain the following expression for the first passage ti
density

f ~ t !5
ag

2K1/2t (21g)/2
H1,1

1,0S a

~Ktg!1/2U~12g/2,g/2!

~0,1! D .

~3.22!

We mention that this result appeared earlier in a short co
munication@24#. It should be noted thatH functions were
first used in the context of probability distributions b
Schneider@25#. They have also been used to express so
tions of fractional diffusion equations@26#. The series expan
sion of theH function in Eq.~3.22! @cf. Eq. ~3.10!# is

f ~ t !5
ag

2K1/2t (21g)/2 (
k50

`
@2a/~Ktg!1/2#k

k!G~12g/22kg/2!
. ~3.23!

This also turns out to be the series expansion of Maitlan
generalized hypergeometric function or the Wright functi
0c1 @22#. Thus an alternative expression forf (t) is

f ~ t !5
ag

2K1/2t (21g)/2 0c1S 2

~12g/2,2g/2!
; 2

a

~Ktg!1/2D .

~3.24!

It is difficult to work with the series expansion off (t)
given in Eq.~3.23! due to the presence of theg function with
large negative arguments. We get around this as follo
From the properties of theg function @15#, we have
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G~12g/22kg/2!52
~k11!g

2
G@2~k11!g/2#.

~3.25!

Using the relation@15#
th
th

is
G~2z!5
2p

sin~pz!G~z11!
, ~3.26!

Eq. ~3.25! can be rewritten as
G~12g/22kg/2!5
p~k11!g

2

1

sin@~k11!pg/2#G@11~k11!g/2#

5
p

sin@~k11!pg/2#G@~k11!g/2#
. ~3.27!

Substituting this into Eq.~3.23!, we obtain

f ~ t !5
ag

2pK1/2t (21g)/2 (
k50

`
@2a/~Ktg!1/2#ksin@~k11!pg/2#G@~k11!g/2#

G~k11!
. ~3.28!

Note that for regular Brownian motion (g51), the above expression forf (t) reduces to

f ~ t !5
a

2pAKt3 (
k50

`
~2a/AKt !ksin@~k11!p/2#G@~k11!/2#

G~k11!
. ~3.29!
r

st,
al-

is
Sec-
me
ed
However@15#,

G~k11!5
4k/2G@~k11!/2#G~11k/2!

Ap
. ~3.30!

Further,

sin@~k11!p/2#50, k odd,

5~21!k/2, k even.
~3.31!

Substituting these relations into Eq.~3.29!, and letting n
5k/2, we obtain

f ~ t !5
a

2pAKt3 (
n50

`
~2a/AKt !2nG@~2n11!/2#~21!n

~4!nG@~2n11!/2G~n11!
.

~3.32!

Simplifying this, we finally obtain

f ~ t !5
a

A4pKt3 (
n50

`
~2a2/4AKt !n

n!

5
a

A4pKt3
exp@2a2/4Kt#. ~3.33!

This is the expected inverse Gaussian distribution for
FPT density function of the ordinary Brownian motion wi
zero drift @19#.

Next we consider the asymptotic behavior of the FPT d
tribution for large values oft. Refer to Eq.~3.22!. Let z
5a/(Ktg)1/2. It is known that@10,27#, for small z,H1,1

1,0(z)
e

-

;uzub1 /B151, sinceb150 andB151. Therefore, the FPT
distribution f (t), for large t, is characterized by the powe
law relation

f ~ t !;t212g/2, ~3.34!

which becomes the well known23/2 scaling law for the
ordinary Brownian motion. We make two comments. Fir
the above power law behavior was observed earlier by B
akrishnan@28# for subdiffusive processes (0,g,1) using a
different method. Using our method the same scaling law
shown also to be applicable to superdiffusive processes.
ond, from Eq.~3.34!, we see that the mean first passage ti
and all higher moments of the FPT distribution are undefin
for 0,g,2.

Next we consider the asymptotic behavior off (t) for
small t @i.e., large z where z5a/(Ktg)1/2]. It is known
@10,27# that, for largez,

H1,1
1,0~z!;Bza/mexp@2mC1/mz1/m#, ~3.35!

where

a5(
j 51

q

bj2(
j 51

p

aj1~p2q11!/2,

C5)
j 51

p

~Aj !
Aj)

l 51

q

~Bj !
Bj ,

m5(
j 51

q

Bj2(
j 51

p

Aj ,
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B5~2p!(q2p21)/2Ca/mm21/2)
j 51

p

~Aj !
2aj 10.5)

l 51

q

~Bj !
bj 20.5.

In our case,p51, q51, a1512g/2, A15g/2, b150, and
B151. Therefore, for largez,

H1,1
1,0S a

~Ktg!1/2U~12g/2,g/2!

~0,1! D
;

1

A~22g!p
S g

2D (g21)/(22g)

z(g21)/(22g)

3expF2
22g

2 S g

2D g/(22g)

z2/(22g)G . ~3.36!

Substituting this into the expression forf (t) @cf. Eq. ~3.22!#,
for small t we obtain

f ~ t !;
r

t (42g)/(422g)
expF2

d

tg/(22g)G , ~3.37!

where

r 5
ag

A4Kp~22g!
S ag

2AK
D (g21)/(22g)

,

d5
22g

2 S g

2D g/(22g)S a

AK
D 2/(22g)

.

For 0,g,2, bothr andd are greater than zero. Therefor
f (t) is exponentially decaying for smallt. Note that forg
51 ~ordinary Brownian motion!, the above expression re
duces to

f ~ t !;
a

A4pKt3
exp@2a2/4Kt#. ~3.38!

In this case, the asymptotic expression turns out to be
exact expression.

We can determine thet value wheref (t) attains its maxi-
mum value from the above expression. We obtain

tmax5S 2dg

42g D (22g)/g

. ~3.39!

For ordinary Brownian motion (g51),

tmax5
2d

3
5

a2

6K
. ~3.40!

The theoretical prediction for the full FPT density functio
given in Eq.~3.22! is verified by numerically simulating the
underlying CTRW process characterized by the probab
density functionf(y,u) @cf. Eq. ~2.5!#. For the sake of nu-
merical efficiency, we replace the waiting time distributio
(a21)/t(11u/t)a in f(y,u) by the Pareto density func
tion @16# @which is equal to zero foru,t and (a
21)ta21/ua for u>t#. The parameter values are chosen
follows: g50.5,a51.0, andK50.1. In Fig. 2, the FPT den
e

y

s

sity function obtained theoretically from Eq.~3.22! is com-
pared with the FPT density function obtained numerica
using ten million realizations of the underlying stochas
process. If we take a large value fort ~50.01!, the agreement
is not that good@see Fig. 2~a!#, since we are not yet close t
the generalized diffusion limit. If, however, we taket to be
1024, the numerical simulation is in excellent agreeme
with the theoretical prediction@see Fig. 2~b!#. The agreement
becomes better ast ands become smaller, approaching th
generalized diffusion limit.

The above statement can be quantified as follows. C
sider the Kullback-Leibler information criterion@29,30#,
which gives a quantitative measure of how ‘‘far apart’’
given approximate density functionf 1(t) is from the exact
density functionf (t). The Kullback-Leibler information cri-
terion is defined as

KL~ f , f 1!5E
0

`

dt f ~ t !log
f ~ t !

f 1~ t !
. ~3.41!

This is always greater than or equal to zero, and is equa
zero if and only iff 1(t) agrees exactly withf (t). The devia-
tion away from zero quantifies the disagreement between
two density functions.

FIG. 2. ~a! Comparison of the theoretical FPT distribution~solid
line! with the distribution~dashed line! obtained by numerically
simulating the underlying CTRW process for a Levy type anom
lous diffusion ~with g50.5) that is not close to the generalize
diffusion limit (t51022). ~b! Same comparison as above, b
closer to the generalized diffusion limit (t51024).
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In our case, we takef 1(t) to be the approximate numer
cally simulated FPT density function for various values ot
~the value ofs is correspondingly varied to keepK con-
stant!. The plot of the Kullback-Leibler information criterion
for different values of 1/t is given in Fig. 3. Ast decreases
~i.e., as the generalized diffusion limit is approached!, the
Kullback-Leibler information criterion also decreases.

B. Nonzero drift case

In this section, we consider the first passage time prob
for Levy type anomalous diffusion with drift. An explici
solution for the FPT density function is not possible in th
case. We obtain the Laplace transform of the FPT den
function ~the so-called ‘‘moment generating function’’@31#!.
Using this, we obtain the mean and variance of the first p
sage time distribution. For regular Brownian motion (g
51), the inverse Laplace transform of the moment gene
ing function can be explicitly carried out to give the standa
results.

Taking the Laplace transform of Eq.~2.33!, we obtain

q~x,s!2
W~x,0!

s
5

K

sg

]2

]x2
q~x,s!2

m

s

]

]x
q~x,s!,

~3.42!

whereq(x,s) is the Laplace transform ofW(x,t). Here we
have again applied the result@18# that the Laplace transform
of 0Dt

2gW(x,t) is q(x,s)/sg. The above equation can b
rewritten as

]2

]x2
q~x,s!1A

]

]x
q~x,s!1Bq~x,s!52

sg21

K
d~x2a!,

~3.43!

where

A52
msg21

K
, B52

sg

K
. ~3.44!

Sinces,K.0, we have

FIG. 3. Plot of the Kullback-Leibler information criterion
against 1/t.
m

ty

s-

t-

l2[A224B5
m2s2g22

K2
14

sg

K
.0. ~3.45!

Therefore, two independent solutions of the homogene
equation corresponding to Eq.~3.43! are given by@32#

q1~x,s!5exp@x~l2A!/2#, q2~x,s!5exp@x~2l2A!/2#.
~3.46!

Consequently, the general solution of Eq.~3.43!, satisfying
all the boundary and initial conditions@cf. Eq.~3.2!#, is given
by

q~x,s!5
sg21

Kl
e2A(x2a)/2@e2lux2au/22e2l(x1a)/2#.

~3.47!

To obtain the Laplace transform of the FPT density fun
tion, we take the Laplace transform of Eq.~3.3! to obtain

F~s!52sE
0

`

dx q~x,s!1E
0

`

dx W~x,0!. ~3.48!

Here we have used the fact that Laplace transform
dW(x,t)/dt is given by @13# sq(x,s)2W(x,0). Since
W(x,0)5d(x2a) @cf. Eq. ~3.2!#, we obtain

F~s!512sE
0

`

dx q~x,s!. ~3.49!

Substituting forq(x,s) from Eq. ~3.47!, we obtain

F~s!512
sg

Kl F E
0

a

dx e2A(x2a)/2e2l(a2x)/2

2E
a

`

dx e2A(x2a)/2e2l(x2a)/2G
1

sg

KlE0

`

dx e2A(x2a)/2e2l(x1a)/2.

The integrals can be easily evaluated, to finally give@upon
using Eq.~3.44!#

F~s!5expF2
amsg21

2K
2aAm2s2g22

4K2
1

sg

K G .

~3.50!

For 0,g,1, F(s) is not a completely monotone func
tion @14#. That is, it does not satisfy the following condition

~21!n
dFn~s!

dsn
>0, for s>0, F~0!51. ~3.51!

HenceF(s) is not a Laplace transform of a probability de
sity function. The physical reason for this is not yet und
stood. For 1<g,2, we have not been able to prove rigo
ously that Fg,m(s) is a completely monotonic function
However, we have calculated the first hundred derivatives
Fg,m(s) using the symbolic manipulation programMATH-

EMATICA, and found that all of them satisfy Eq.~3.51!.
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Hence we conjecture thatF(s) is the Laplace transform of a
probability density function for 1<g,2. Henceforth, we re-
strict ourselves to this parameter range.

First consider the case where the drift is toward the b
rier. This implies thatm,0, since in our formulation the
diffusive process starts atx5a.0 and the barrier is atx
50. In this case, the FPT density function can be written
@cf. Eq. ~3.50!#

F~s!5eag(s), ~3.52!

where

g~s!5
umusg21

2K
2

umusg21

2K
A11

4Ks22g

m2
. ~3.53!

The mean first passage time is given by

^T&52
dF~s!

ds U
s50

. ~3.54!

From Eqs.~3.52! and ~3.53!, we have

dF~s!

ds
5F umu~g21!sg22a

2K S 12A11
4Ks22g

m2 D
2

~22g!aS 11
4Ks22g

m2 D 21/2

umu
G eag(s). ~3.55!

We need to find the limiting value of the above expression
s→0. First considereag(s). As s→0, we can expand the
square root in Eq.~3.53! to give

g~s!52
s

umu
1

Ks32g

umu3
2•••. ~3.56!

Henceg(s)→0 ass→0. Consequently,eag(s)→1 ass→0.
Performing similar expansions for the other terms in E
~3.55!, we finally obtain@cf. Eq. ~3.54!#

^T&5
a

umu
. ~3.57!

Note that the mean first passage time is independent ofg.
The variance is obtained as follows:

Var~T!5^T2&2^T&2. ~3.58!

Therefore, we need to evaluate^T2&. This is given by

^T2&5
d2F~s!

ds2 U
s50

. ~3.59!

Now

d2F~s!

ds2
5Fa

d2g~s!

ds2
1S a

dg~s!

ds D 2Geag(s). ~3.60!
r-

s

s

.

Consider the first term. The second derivative ofg(s) is
given by

d2g~s!

ds2
5

umu~g21!~g22!sg23

2K S 12A11
4Ks22g

m2 D
2

~g21!~22g!

umus S 11
4Ks22g

m2 D 21/2

1
2K~22g!2s12g

umu3
S 11

4Ks22g

m2 D 23/2

.

Expanding all terms, we obtain

d2g~s!

ds2
52

umu~g21!~g22!sg23

2K

3 (
n52

`
~21!n211•3•••~2n23!

2nn!
S 4Ks22g

m2 D n

2
~g21!~22g!

umus (
n51

`
~21!n1•3•••~2n21!

2nn!

3S 4Ks22g

m2 D n

1
2K~22g!2s12g

umu3

3 (
n50

`
~21!n1•3•••~2n11!

2nn!
S 4Ks22g

m2 D n

.

After considerable manipulation, this can be rewritten as

d2g~s!

ds2
5

2K~22g!s12g

umu3

3 (
n50

` Fn~22g!1~32g!

~n12! G~21!n1•3•••~2n11!

2nn!

3S 4Ks22g

m2 D n

.

Thus the first term in Eq.~3.60! is given by

a
d2g~s!

ds2
eag(s)5

2Ka~22g!s12g

umu3
eag(s)

3 (
n50

` Fn~22g!1~32g!

~n12! G
3

~21!n1•3•••~2n11!

2nn!
S 4Ks22g

m2 D n

.

~3.61!

For g51, the case of ordinary Brownian motion, from th
above equation we obtain
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a
d2g~s!

ds2
eag(s)U

s50

5
s2a

umu3
. ~3.62!

Here we have also used the fact thatK5s2/2 for g51. On
the other hand, for 1,g,2, ass→0, the prefactor multi-
plying the sum in Eq.~3.61! diverges, whereas the sum itse
is finite and bounded away from zero. Consequently, fo
,g,2 the first term in Eq.~3.60! diverges ass→0.

Next we consider the second term in Eq.~3.60!. We al-
ready know the limiting behavior of this term for 1<g,2,
as s→0, from our earlier analysis for mean first passa
time, namely,

S dg~s!

ds D 2

eag(s)U
s50

5
a2

m2
. ~3.63!

Substituting the above results into Eq.~3.59!, for g51 we
obtain

^T2&5
s2a

umu3
1

a2

m2
. ~3.64!

Therefore@cf. Eq. ~3.58!#,

Var~T!5s2a/umu3 ~3.65!

for g51. For 1,g,2, the first term in Eq.~3.60! diverges
ass→0, whereas the second term is finite. Therefore,^T2&
diverges. Hence the variance also diverges.

Next consider the case where the drift is away from
barrier. This implies thatm.0 in our formulation. Now the
FPT density function can be written as in Eq.~3.52!, where

g~s!52
umusg21

2K
2

umusg21

2K
A11

4Ks22g

m2
. ~3.66!

Performing the same analysis as above, it is easily seen
the mean and variance diverge for 1<g,2.

For g51, the Laplace transform of the first passage ti
density function reduces to@cf. Eq. ~3.50!#

F~s!5expF2
a

2K
~m1Am214Ks!G . ~3.67!

Now the inverse Laplace transform of exp(2aAs),a>0, is
@13#

a

2Apt3
exp~2a2/4t !. ~3.68!

Using this result, we can easily perform the inverse Lapl
transform of Eq.~3.67!, to obtain

f ~ t !5
a

A4pKt3
expF2

~a1mt !2

4Kt G , a.0, t.0.

~3.69!

We comment that, if the starting point of the diffusion
chosen atx(0)50, a negativem will be used in the above
1

e

e

at

e

e

equation, and we recover the expected inverse Gaussian
sity @19# for the FPT density function of Brownian motio
with drift.

C. Absorbing barriers at xÄÀb and xÄa

In this section, we consider the first passage time prob
for Levy type anomalous diffusion with zero drift and a
sorbing barriers placed atx52b and x5a. We obtain an
explicit solution for the first passage time density.

The FFPE to be solved is given in Eq.~3.4!. The bound-
ary and initial conditions become

W~2b,t !5W~a,t !50, W~x,0!5d~x!. ~3.70!

We solve the FFPE using the method of separation of v
ables@21#. Let W(x,t)5X(x)T(t). Substituting in Eq.~3.4!,
we obtain

X~x!T~ t !2X~x!5 0Dt
2gT~ t !KX9~x!, ~3.71!

where X9(x) denotes the second derivative ofX(x) with
respect tox. Separating out the variables and introducing t
separation constantl, we obtain

KX9~x!5lX~x! ~3.72!

and

T~ t !215l 0Dt
2gT~ t !. ~3.73!

The solution of Eq.~3.72!, with the given boundary condi
tions is given by

Xn~x!5AnsinFnp~b1x!

~a1b! G , ~3.74!

with

ln52
n2p2

~a1b!2
K, n51,2, . . . . ~3.75!

To solve Eq.~3.73!, we take its Laplace transform to obta
~introducing the subscriptn coming fromln)

Tn~s!2
1

s
5

ln

sg
Tn~s!. ~3.76!

Here we have used the fact that the Laplace transform

0Dt
2gT(t) is T(s)/sg. Solving forTn(s), we obtain

Tn~s!5
1

s2lns12g
. ~3.77!

Taking the inverse Laplace transform@22#, we finally obtain

Tn~ t !5EgF2
n2p2

~a1b!2
KtgG , ~3.78!

whereEg(z) is the Mittag-Leffler function introduced earlie
@cf. Eq. ~3.8!#.
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Combining the solutions for space and time parts, we
tain

W~x,t !5 (
n51

`

AnsinFnp~b1x!

~a1b! GEgF2
n2p2

~a1b!2
KtgG .

~3.79!

The coefficientsAn are determined by imposing the initia
conditionW(x,0)5d(x). This gives us

An5
2

a1b
sinF npb

~a1b!G . ~3.80!

Hence

W~x,t !5 (
n51

`
2

a1b
sinF npb

~a1b!GsinFnp~b1x!

~a1b! G
3EgF2

n2p2

~a1b!2
KtgG . ~3.81!

From Eq.~3.3!, the FPT density function is given by

f ~ t !52
d

dtE2b

a

dx W~x,t !. ~3.82!

Substituting forW(x,t) in this equation, we obtain

f ~ t !52
d

dt H 4(
n50

`
1

~2n11!p
sinF ~2n11!pb

~a1b! G
3EgF2

~2n11!2p2

~a1b!2
KtgG J . ~3.83!

Here we have used the fact that

E
2b

a

sinFnp~b1x!

~a1b! G5
2~a1b!

np
if n is odd,

50 if n is even.

To evaluate the derivative in Eq.~3.83!, we write the
Mittag-Leffler function in terms of theH function using Eq.
~3.11!:

f ~ t !52
4

p (
n50

`
1

2n11
sinF ~2n11!pb

~a1b! G d

dt

3H1,2
1,1S ~2n11!2p2

~a1b!2
KtgU ~0,1!

~0,1!, ~0,g!D .

~3.84!

However@10#
- d

dt
H1,2

1,1S ~2n11!2p2

~a1b!2
KtgU~0,1!

~0,1!, ~0,g!D
5

1

t
H2,3

1,2S ~2n11!2p2

~a1b!2
KtgU~0,g!, ~0,1!

~0,1!, ~0,g!, ~1,g!D
5

1

t
H1,2

1,1S ~2n11!2p2

~a1b!2
KtgU~0,1!

~0,1!, ~1,g!D .

In the last step, we have used properties 1 and 2 ofH func-
tions @cf. the Appendix#. From the series expansion of theH
function given in Eq.~3.10!, it can be shown after som
manipulation that

H1,2
1,1S zU~0,1!

~0,1!, ~1,g!
D 52zEg,g~2z!, ~3.85!

whereEa,b(z) is the generalized Mittag-Leffler function@22#

Ea,b~z!5 (
k50

`
zk

G~b1ka!
, a,b.0. ~3.86!

Using this in the expression forf (t), we obtain

f ~ t !5
4pKtg21

~a1b!2 (
n50

`

~2n11!sinF ~2n11!pb

~a1b! G
3Eg,gF2

~2n11!2p2

~a1b!2
KtgG . ~3.87!

For a regular Brownian motion (g51), we obtain

f ~ t !5
4pK

~a1b!2 (
n50

`

~2n11!sinF ~2n11!pb

~a1b! G
3expF2

~2n11!2p2

~a1b!2
KtG . ~3.88!

IV. CONCLUSIONS

We studied the first passage time~FPT! problem for Levy
type anomalous diffusion. We obtained the FPT distribut
using the recently formulated fractional Fokker-Planck eq
tion. We derived an explicit expression for the FPT distrib
tion in terms of Fox orH functions when the diffusion ha
zero drift. The theoretical result was verified by numerica
simulating the underlying continuous time random wa
When the drift is nonzero, we obtained an analytic expr
sion for the Laplace transform of the FPT distribution. Th
was used to calculate the mean and variance of the
distribution. Finally, for the case of two absorbing barriers
finite distances from the origin, we expressed the FPT dis
bution in terms of a power series. In all of the above situ
tions, the known results for ordinary diffusion~Brownian
motion! were obtained as special cases of our more gen
results.
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APPENDIX: PROPERTIES OF H FUNCTIONS

The H function has the following remarkable properti
@10# which we will use later.

Property 1. The H function is symmetric in
the pairs (a1 ,A1), . . . ,(an ,An), likewise
(an11 ,An11), . . . ,(ap ,Ap); in (b1 ,B1), . . . ,(bm ,Bm) and
in (bm11 ,Bm11), . . . ,(bq ,Bq).

Property 2.Providedn>1 andq.m,

Hp,q
m,nS zU~a1 ,A1!, ~a2 ,A2!, ••• , ~ap ,Ap!

~b1 ,B1!, ••• , ~bq21 ,Bq21!, ~a1 ,A1!
D

5Hp21,q21
m,n21 S zU~a2 ,A2!, ••• , ~ap ,Ap!

~b1 ,B1!, ••• , ~bq21 ,Bq21!
D .

~A1!

Property 3.Providedm>2 andp.n,

Hp,q
m,nS zU~a1 ,A1!, ••• , ~ap21 ,Ap21!, ~b1 ,B1!

~b1 ,B1!, ~b2 ,B2!, ••• , ~bq ,Bq!
D

s.

s

.

.

x
,

5Hp21,q21
m21,n S zU~a1 ,A1!, ••• , ~ap21 ,Ap21!

~b2 ,B2!, ••• , ~bq ,Bq!
D .

~A2!

Property 4.

Hp,q
m,nS zU~aj ,Aj ! j 51, . . . ,p

~bj ,Bj ! j 51, . . . ,q
D 5Hq,p

n,mS 1

z U~12bj ,Bj ! j 51, . . . ,q

~12aj ,Aj ! j 51, . . . ,p
D .

~A3!

Property 5.For k.0,

1

k
Hp,q

m,nS zU~aj ,Aj ! j 51, . . . ,p

~bj ,Bj ! j 51, . . . ,q
D 5Hp,q

m,nS zkU~aj ,kAj ! j 51, . . . ,p

~bj ,kBj ! j 51, . . . ,q
D .

~A4!

Property 6.

zrHp,q
m,nS zU~aj ,Aj ! j 51, . . . ,p

~bj ,Bj ! j 51, . . . ,q
D

5Hp,q
m,nS zU~aj1rAj ,Aj ! j 51, . . . ,p

~bj1rBj ,Bj ! j 51, . . . ,q
D . ~A5!
-

,

s

s
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