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Anomalous diffusion and the first passage time problem
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We study the distribution of the first passage tifT) in Levy type anomalous diffusion. Using the
recently formulated fractional Fokker-Planck equation we obtain three resliltdVe derive an explicit
expression for the FPT distribution in terms of Fox-bfunctions when the diffusion has zero drif2) For the
nonzero drift case we obtain an analytical expression for the Laplace transform of the FPT distriButga.
express the FPT distribution in terms of a power series for the case of two absorbing barriers. The known
results for ordinary diffusiorfBrownian motion are obtained as special cases of our more general results.

PACS numbd(s): 05.40.Fb, 05.40.Jc, 05.60.Cd

[. INTRODUCTION sive cases, respectively. Anomalous diffusion with drift
X, () is defined by
For a stochastic process, the first passage tiR#I) is

defined as the tim& when the process, starting from a given Xu(t) = pt+X(1). 29
point, reaches a predetermined level for the first time, and is . ) )
a random variablg1—4]. In this paper, we consider the dis- FOr further discussions and examples of anomalous diffu-
tribution of the FPT in the context of anomalous diffusion. Sions in physical, chemical, and biological systems, see Refs.
By anomalous diffusion we mean a process where the med:6l- For completeness we give in what follows a brief in-
square displacement of the diffusive variabiét) scales troduc_uon to CTRW and the limiting process leading to the
with time as(X2(t))~t? with 0<y<2. If y=1, we obtain  €stablishment of the FFPE.
ordinary diffusion. There are different mechanisms for gen-
erating anomalous diffusion. Our focus will be on the con- A. Details of the process
tinuous time random walkCTRW) [5,6], where the waiting We start with a one-dimensional continuous time random

time is a Levy type variable obeying certain power law dis’walk described by the following Langevin equation:
tribution. We subsequently refer to the process as Levy type

anomalous diffusion. Recent work shows that in the gener- dx =

alized diffusive limit the probability density function of the a:_z Y;o(t—t;). (2.2
CTRW is described by a fractional Fokker-Planck equation =1
(FFPB [7,8]. Using this equation, together with appropriate _

initial and boundary value condition, we derive an exact sol1€re the random walker startsxat-0 at timet,=0. Subse-
lution for the FPT density function in terms of Fox er  duently, the random walker waits at a given locatiqrfor
functions [9,10], when the anomalous diffusion has zero imeti—ti— before taking a jumjY; which could depend on
drift. For the nonzero drift case we derive an expression fof'€ Waiting time. The waiting time>0 and the jump sizg
the Laplace transform of the FPT density function. This(—%*<y<%) are drawn from the joint probability density
Laplace transform is then used to obtain the mean and varfUnction¢(y,u). The waiting time distributions(u) is given
ance of the FPT. Finally, we derive an explicit expression foreY

the FPT density function for Levy type anomalous diffusion

with absorbing barriers at finite distances from the origin. d(u)= fm dy B(y,u). 2.3

Il. LEVY TYPE ANOMALOUS DIFFUSION The process is non-Markovian if#(u) is a nonexponential

For an ordinary diffusive process, the mean square disdistribution, since the probability for the next jump to occur
placement scales withas (X?(t))~t in the larget limit. If ~ depends on how long the random walker has been waiting
(X?(t))~t”, we have anomalous diffusion, with<0y<<1  since the previous jump. But the CTRW is non-Markovian in

and 1<y<2 corresponding to subdiffusive and superdiffu- & special way, since it does not depend on the history of the
process prior to the previous jump.

It can be shown[5] that the probability distribution

*Also associated with the Jawaharlal Nehru Centre for AdvancedV(X;t) for the CTRW is related ta(y,u) and ¢(u). This
Scientific Research, Bangalore, India. Electronic addressrelation is simpler to write down in the Fourier-Laplace

rangaraj@math.iisc.ernet.in transform space. Denoting the Fourier-Laplace transform of
"Electronic address: ding@walt.ccs.fau.edu W(x,t) and ¢(y,u) by W(k,s) and ¢(k,s), respectively
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(wherek is the Fourier transform of the space variable, and Fr2—a) ()} * (rs)2°¢
the Laplace transform of the time variapleve have[5] Fl-a,75)~——— — —.
a—1 a—1 2—«a
~ (2.11)
W(k )=— ﬂ (2.4 ~
(ki$)=3 1-d(k,s) ' Thereforey(s), ass—0, is given by
~ 7 1 _ _ a—1
Herey(s) is the Laplace transform af(u). P()=1-T(2=a)(r5)* 7, 1<a<2, (212
It can be further shown, depending on the specific form of _ Pe—3) ] 2 2
#(y,u), that the CTRW can produce both subdiffusive (0 ~1-(2a=3)7sl(a=2), a>2. (2.13

<vy<1) and superdiffusive processes{¥<2) as well as

ordinary diffusion ¢y=1) [5,11]. For example, consider Substituting this into Eq(2.4) we have[cf. Eq. (2.8)]

(a—1)/7

- 1 I2—a)(rs)*?t
(1+uln)® Wek,s)~ 5

S1-[1-T'(2—a)(7s)* Y]exp — o?k?/2)’

sexy —y?/20°]

1
¢(yvu)_ \/m (25)

wherey andu are decoupled witly being a Gaussian vari- 1<a<?2, (2.14
able with zero mean. For 4a<2, the corresponding
CTRW is characterized by a subdiffusive process wyth 1 arsl(a—2)
=a—1, and fora=2, one obtains ordinary diffusion with ~— ,
y=1. This is demonstrated as follows. S 1-[1-ars/(a—2)]exp — o?k?/2)
The waiting time distributionj(u) is given by[cf. Egs.
(2.5 and(2.3)] a>2. (2.19

(2.6

Even though this is not a Levy stable distribution, it belongs
to the domain of attractiofil2] of a one-sided stable Levy
law. It has an infinite mean ford«<2, the range we are

interested in(it has a finite mean fow>2). We callu a

“Levy type variable” for want of a better name. The

Laplace transformj(s) of ¢(u) is [13]
PW(s)=(a—1)(r5)* T (1—a,r5)e™. 2.7

The Fourier-Laplace transformp(k,s) of &(y,u) in Eq.
(2.5 is given by[13]
b(k,s)=exp — a?k?2)(s). (2.9

To show that the CTRW characterized by E215) exhib-

its anomalous diffusion, we need to demonstrate that
(X?(t))~t for larget(0< y<1). By the Tauberian theorem

[14], this is equivalent to{X?(s))~1/s'"” for small s(O
<+y<1). But we have the result

(X3(s))=— &—ZVV(k,S)
k2 o

(2.9

Thus we need the expression #f(k,s) in the limit s—0.
Since W(k,s) is a function of #(s) and ¢(k,s) [cf. Eq.
(2.4)], we first considerj(s). We have[15]

= ()" 1-a+n
r(l—a,rs)=F<1‘“)_;o(m()1(++m

(2.10

As s—0,

Using this in Eq.(2.9) and evaluating the second derivative
atk=0, in the limits—0 we obtain

2
1<a<2,

2(g))~
(X(s)) I (2.16

2—a)rt s

(a—2)c? 1
—, a>2 (2.1

aT S

Thus we have shown that the CTRW characterized by Eq.
(2.5 is a subdiffusive process forda<2 with y=a—1,
and, fora>2, one obtains ordinary diffusion with=1. For
a=2, by taking proper limits, one can show that we again
obtain ordinary diffusion.

We verify the above result numerically by simulating the
CTRW process. For the sake of numerical efficiency, we
replace the waiting time distributiopi(u) in Eq. (2.6) by the
Pareto distributiorf16]

#(u)=0, u<r, (2.18
(a— 1)7'“7l
= u=r
ua
(2.19

This approximation is well justified for small values of A
numerically obtained mean square displacement is compared
with the theoretical prediction in Fig. 1 fak=1.5 (i.e., y
=0.5), a=1.0, 7=10 4, and¢>=3.5x 10" 3. We note that
the numerical simulation is in excellent agreement with the
theoretical prediction.

If, on the other handg(y,u) is given by the coupled
distribution[5]

(B—1)Ir

arunp @20

1
¢(y,U)=§6(u/T—|y|/cr)
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B. Fractional Fokker-Planck equation for Levy type
anomalous diffusion

In Sec. Il A, we described CTRW processes that give rise
to Levy type anomalous diffusion. However, it is difficult to
derive analytical results directly from the process. It is more
convenient to work in the general framework of Fokker-
Planck equationgl]. One can go from the CTRW process to
a fractional Fokker-Planck equati)8@] by taking the gener-
alized diffusion limit. This limit is analogous to the regular
diffusion limit that one considers to derive the regular
Fokker-Planck equatiorfl] from a random walk with
(X?(t))~t for larget. In the regular diffusion limit, one lets
o,7—0, such thato?/7 is maintained a constant. For a
CTRW where(X?(t))~t7(0<y<2), the generalized diffu-
sion limit is obtained by taking the limit-,7—0 such that

FIG. 1. A log-log plot of the mean squared displacement ob-0°/ 77 is maintained a constant.

tained by numerically simulating the underlying CTRW process for

a Levy type anomalous diffusion with=0.5.

where 2< <3 and §(-) is the Dirac delta function, the
CTRW describes a superdiffusive process witkr 8—1.
This can be seen as follows.

Proceeding as before, the waiting time distributigfu)
is given by[cf. Egs.(2.20 and(2.3)]

(B—1)7

W)= e

(2.21

It has a finite mean but an infinite variance fox B<3. Its
Laplace transform in the limis—O0 is given by

WY(s)~1—(2B—3)7sl(B—2). (2.22

The Fourier-Laplace transformp(k,s) of ¢(y,u) in Eq.
(2.20 is given by(in the limit s—0 andk<s)

(B—1I'(3-p)

2 2/ _\p-3
5 keos(18)" " ".

(2.23

Substitutingy/(s) and ¢(k,s) into Eq. (2.4) we obtain

b(K,S)=~(s)—

-1

(B-1)(B=2)I'(3-p)

W(k,s)~|s+ 2(26-3)

k2a?(rs)P 3

(2.29

Using this in Eq.(2.9 and evaluating the second derivative

atk=0, in the limits—0 we obtain

(B-1)(B=2)I'(3-p) 1

2 ~
(X%(9)) TR

R (2.295

By the Tauberian theorenjl14], this is equivalent to
(X?(t))~t*"A. Thus the CTRW characterized by Eg.20
is a superdiffusive process for<23<3, with y=4— (1
<y<2).

Thus to obtain a FFPE from the CTRW process, we need
to take the limito,7—0. We will take this limit for the
Fourier-Laplace transforriV(k,s) of W(x,t), and then in-
vert the transform to obtain the FFPE. First consider the
subdiffusive CTRW characterized by E@.5). In Sec. Il A,
we already derived an expression ff(k,s) in the limit s
—0 (which is equivalent to the limitr—0 that we now
require:

Wik~ - I(1=y)(73)”
(ks S1-[1-T(1—y)(7s)"]exp(—o?k?/2)
(2.26

Here we have useg= a—1(0<y<1) instead ofr, since it

is the physically relevant quantity. Now we take the further
limit o—0 such thaw?/2I'(1— y) 7’=K is a constantK is
called the generalized diffusion constant. We then obtain

W k,s)=————. 2.2
() s+Kk?st ™ (229
This can be rewritten as
~ 1 ~
W(k,s)— - —Kk?s™ "W(Kk,s). (2.28

To take the inverse Fourier-Laplace transform of the above
equation, we need the inverse Laplace transform of

s "W(k,s). This is given by the Riemann-Liouville frac-
tional integral oD; W(Kk,t), which is defined a§17,1§
1

oD "W(k,t)= Ty

ftdt’(t—t’)le(k,t’), y>0.
0
(2.29

This result enables us to take the inverse Fourier-Laplace
transform of Eq(2.28), giving [7,8]

(92
W(x,t) —W(x,0)=K OD[“/FW(X,t), 0<y<1.
X

(2.30

Note that there are several other possible forms for
¢(y,u), which also give rise to subdiffusive and superdiffu- Here we have incorporated the initial conditiof(x,0)
sive behaviors. See Rgb] for a detailed discussion. =5(X).
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Next we consider the superdiffusive CTRW process char- o
acterized by Eq(2.20. We have already derived an expres- (X2)=2u th_lf _dx XWX, )
sion for W(k,s) in the limit k,s—0 (which is equivalent to
the limit o,7— 0 that we now requine

B=P@=PT=D) 5 o o1y o

2(5-2y) 7T ' where we have again used integration by parts and assumed
(23D that x®W(x,t)=0 and x?[dW(x,t)/dx]=0 at x==*o,

Evaluating the remaining integrals using the fact that

JZdx xW(x,t)=(X,)=put and the boundary and normal-

ization conditions, we obtain

IW(X,t)
ox

—2K onyf dx x (2.37)

W(k,s)~| s+

This expression is valid in the regime< 7. Taking the gen-
eralized diffusion limit, we again obtain E(R.28), but now
K=(3—7)(2—y)I'(y—1)0%2(5—-2y)7” and 1<y<2.
Therefore, this superdiffusive CTRW process also gives Eq. 2\_5,2 -1 —y
(2.30 with the aboveK and 1< y<2. (X,) =247 oDy (1 +2K oD, (1), (2.38
To summarize, a class of Levy type anomalous diffusion
can be described by the following FFPE in the generalize
diffusion limit:

ut oD, }(t)=t?2 and D, ?(1)=t"/T'(y+1) [18]. There-
ore,

, 2Kt

J X2y= 224 ————— . 2.3
W(x,t)—W(x,0)=KOD;VPW(x,t), 0<y<2. (X =n C(y+1) (2.39
X

. . . 2
(232 The variance VdiX, ] is given by(X2)—(X,)2. Hence

HereK has different expressions foxOy<<1 and 1< y<2, 2Kt

as described above. We note that there are other CTRW pro- vaiX,]= =——.

cesses which may give rise to different FFPE’s. In this paper, I'(y+1)

we consider only the FFPE given in E@®.32. The above ,

FFPE describes Levy type anomalous diffusion with zero! "US We see that our FFPE gives the correct moments.

drift. For anomalous diffusion with drifi, the above FFPE

can be generalized to giVé] Ill. FIRST PASSAGE TIME PROBLEM FOR LEVY TYPE
ANOMALOUS DIFFUSION

(2.40

2
W(x,t) —W(x,0)=K oD, 7a—W(x,t)—MonliW(x,t), We now formulate the first passage time problem for the
ax? 2 FFPE given in Eq(2.33 describing Levy type anomalous
(2.33  diffusion with drift. Consider a stochastic proces&) with
X(0)=0. The first passage tim&PT) T to the pointX=a is
where 0<y<2. We also note that foy=1, the above FFPE defined ag19]
reduces to the regular Fokker-Planck equation describing

Brownian motion. T=inf{t:X(t)=a}. (3.
We now show that this FFPE gives the correct moments.
The natural boundary conditions for the FFPE are We would like to obtain the probability density function for
T. This is the first passage time problem.
W(—=,t)=W(*,t)=0, W(X,00=6(x). (2.34 For a process described by Fokker-Planck equations, the

) o ) ) problem of obtaining the FPT density function can be recast
First we computgX,,). Multiplying the FFPE given in Eq. as a boundary value problem with absorbing bounddfigs
(2.33 by x, and integrating fronx= — to x=c, we obtain  |n our case, to obtain the FPT density function, we first need

WD) to solve Eq.(2.33 with absorbing boundaries at= — and
_ —1 7 _ 7 X, x=a, wherea is the predetermined level of crossing, with
(X =m oDy f_mdx WXt =K oDy f X the initial conditionW(x,0)= 5(x) [1]. An equivalent formu-
(2.35 lation, due to symmetry, is to solve ER.33, with the
boundary and initial conditions
where we have performed integration by parts and assumed
that xXW(x,t)=0 andx[ dW(x,t)/dx]=0 atx= oo, Evalu- W(0t)=0, W(,t)=0, W(x,00=48(x—a), (3.2
ating the remaining integrals using the natural boundary con-
ditions and the normalization integrflf ..dx W(x,t)=1, we  wherex=a is the new starting point of the CTRW, contain-

obtain ing the initial concentration of the distribution. The equiva-
lence is easily seen by making the change of variakles
(X =u 0Dt’l(l)z,ut. (2.36 —a—x in Eq. (2.33. The only change is in the interpreta-
tion of u. Now u<<0 corresponds to a drift toward the bar-
This is the expected result. rier. This latter formulation makes the subsequent derivation

Next we compute VX, ]. Multiplying the FFPE in Eq.  less cumbersome. Once we solve W/(x,t), the first pas-
(2.33 by x2, and integrating, we obtain sage time density(t) is given by[1]
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d r=
f(t)=—a fo dx W(x,t). (3.3

In the following subsections, we obtain the FPT density
function for Levy type anomalous diffusion under different
conditions.

A. Zero drift case

In this section, we obtain an explicit solution for the FPT
density for a zero drift Levy type anomalous diffusion in
terms ofH functions[9,10,20. Asymptotic expressions for
the FPT density in various limits are obtained. Numerical
simulations are performed to confirm the above results.

Settingu=0 in Eq.(2.33, we obtain

2

W(X,t)—W(x,0)= K ODt_’a—ZW(x,t). (3.4)
ax

Taking into account the boundary and initial conditignf
Eqg. (3.2)], we are led to the following expansion f@v(x,t)
[21]:

2 o
W(x,t)z;fo dksinkxsinkaA(k,t), (3.5

with A(k,0)=1. To determine the unknown functidx(k,t),
we substitute the above expansion #i(x,t) in Eqg. (3.4)
and, after straightforward algebra, obtaia(k,t)—1=
—Kk? oD "A(k,t). Taking the Laplace transform with re-
spect tot, we have

A(k,s)= (3.6

s+k2Kst™ 7'

whereA(k,s) is the Laplace transform oA(k,t). Here we
have applied the resu[tl8] that the Laplace transform of
oD¢ 7A(k,t) is A(k,s)/s”.

Inverse Laplace transform of E(B.6) yields[22]

A(k,t)=E.(—k?Kt?), (3.7

whereE ,(2) is the Mittag-Leffler functior{22]. The Mittag-
Leffler function can be defined by the following power series
expansion:
Ey(Z):nZO m (3.8)
Wheny=1, the Mittag-Leffler function reduces to the usual
exponential functiore?. Substituting Eq(3.7) into Eq.(3.5),
we obtain

2 ©
W(x,t)= ;Jo dksinkxsinkaE,(—k?Kt?). (3.9

To proceed further, we introduce the Fox tdrfunction
[9,10,20 which has the following alternating power series
expansion:

AND MINGZHOU DING PRE 62

e (@ ADj=1,... p)
(bj,Bj)j=1,.
m 0
(~1kz
_Igl kZO k!B,
m n
1:1;!#' F(bj_BjS”()rl:[l F(l_ar+ArS|k)
X—q p '
F(1-b,+Bsi) 11 T(a,~A,s1)
u=m+ v=n+1
(3.10

wheres) = (b,+k)/B, and an empty product is interpreted
as unity. Furtherm, n, p, and q are non-negative integers
such that Bsn<p and 1l=m=q; A; and B; are positive
numbersga; andb; can be complex numbers. We will denote
theH function byH’,}1 (2) for the sake of notational simplic-
ity wherever this does not lead to any confusion. THie
function has several remarkable properties, some of which
are listed in the Appendix.

Returning to our problem, by comparing the series expan-
sion[cf. Eq.(3.8)] of the Mittag-Leffler functiorE ,(z) with
that of theH function[cf. Eq. (3.10], we see that

E (-2 =H1'1(z : 3.1
A7 0,0, (o) 40
Substituting this into Eq(3.9), we obtain
W(X,t)= 2de inkx sinkaH>Y k2Kt” (0.0
( ’ _7T 0 s s a 1.2 (011)1 (an) .
(3.12
Letting k’ =k(Kt”)¥2 the above equation becomes
W(X,t)= ———
bt m(Kt7)H2
XJ ‘dk’sink’xsink’a
0
(0,1 )
xHYY (k")? . (313
124 %01, (0

Using property 5Eq. (A4)] of the H functions to replace
(k")2 by k’, we obtain

XJ dk’sink’x sink’a
0

1Y
H”( X <o,y/2>) |

The above equation can be rewritten as follows, making
use of the standard trigonometric identity 2 kirsink’'a
=cosk’ (x—a)—cosk’ (x+a):

(0,1/2)

(0,1/2), 319
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W(x,t f dk'[cok’ f(t)= d !
0 i e ) O ke
(0,1/2) 1—y/2,y/12
—cosk’ (x+a)]H11<k’ , f dx o |x—al |(1=v2,yl2)
(0,1/2), (0,y/2) Ktv)llz (0,2
3.1
(3.19 X 1
The above Fourier cosine transforms can be solved by suc- dT 2(Kt7)1?
cessive applications of a Laplace and an inverse Laplace
transform(a technique pioneered by F$23] for solving a y wd HLO x+a [(1-y/2,y/2)
wide variety of integral transformgo give [20] 0 X Hiy (Kt7)12 (0,2)

W(X,t)zm
Ix—a| [(1,1/2), (1,¥/2), (1,1/2
8 (KtH¥?2| (1,0, (1,172, (1,172
1
~ 2(x+a)
o xta [(L12, (1y2), (1,172
23 (k12| (LY, (1,12, (L,12)]
(3.16

Now, applying property 4cf. Eq. (Al)] of the H func-
tions to reduce the order of ottt function, we obtain

(1,9/2),
(1,1,

|x—al

W(x,t)= (Kty)1/2

(1,1/2)
(1,1/2)

(1,172
(1,1/2))°

(3.17

2|x—a| 22

X+a

1 oo (1,7/2),
2(x+a) 24 (Ktr)l2

(1D,

Applying properties 1 and Bcf. Eq. (A2)] of the H func-
tions, we can further reduce the order of ¢difunction:

B , |x—al| |(1,9/2)
W(X't)_2|x—a| M (kenv2| (1D
1 19 XTa (1,y/2)
S 2(x+a) M (kir)2| (1,0 - 318

Applying property 6[cf. Eq. (A5)] of the H functions with
=|x—a| (or z=x+a) andp=—1, we finally obtain

W B |x— a| (1= vI2,y/2)
()= 2(KtM¥2| HH (ken¥2| (0,1
19 Xta (1= vI2,y/2)
1 kim0 (319

Substituting Eq(3.19 into Eq. (3.3), we have

(3.20

Defining z=(x—a)/(KT?)"? and z’ = (x+a)/(KT”) "2 we
obtain

f=— 2 o dzHid |2 (1= yI2,y/2)
dt —al(Kt")12 (0,1
d (= )
_ rigl,0 5
* dtfa/(Kt7)1/2dZ Hl'l(z (0,9 )

(3.21

Evaluating the above equatidwhich is easily done since
the onlyt dependence is in the limits of the integhalae
obtain the following expression for the first passage time
density

f(t)= (0.1)

y o a  |[(A=v2y02)
Hx
K L2 (2+ )2 11 (Kty)llz
(3.22

We mention that this result appeared earlier in a short com-
munication[24]. It should be noted that functions were
first used in the context of probability distributions by
Schneidel{25]. They have also been used to express solu-
tions of fractional diffusion equatiori26]. The series expan-
sion of theH function in Eq.(3.22 [cf. Eq. (3.10] is

ay & [-al(Ki)¥K
oK U2 (2+ 02 o KIT(1— y[2—kyl2)

f(t)= (3.23

This also turns out to be the series expansion of Maitland’s
generalized hypergeometric function or the Wright function
o1 [22]. Thus an alternative expression fit) is

ft)= ay - ] a
0= k@2 | (12, yi2) (Kt")¥2)”
(3.24

It is difficult to work with the series expansion é{t)
given in Eq.(3.23 due to the presence of thefunction with
large negative arguments. We get around this as follows.
From the properties of the function[15], we have
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(1= yi2—kyi2) = — DY Lty [(—2)= - 3.2
(1=yl2=kyl2)=—— [—(k+1)y/2]. (—Z)—m, (3.26
(3.29
Using the relatior 15] Eq. (3.295 can be rewritten as
|
F(1— yl2—kyl2) = KDY !
(==Y = = G (KT Dy 2T 1+ (KT 1) /2]
- W 3.2
~sin(k+ 1) myl2IT[(k+1) /2] (327
Substituting this into Eq(3.23, we obtain
= [—al (Kt Y2)%sin (k+ 1) wy/2]T[ (k+ 1)7//2]
(0= s 2 (3.28
FKY2 292 (= I'k+1)
Note that for regular Brownian motionyE 1), the above expression fé(t) reduces to
(0= i (—al Kbk S|r{(k+1)7r/2]F[(k+1)/2] (3.29
- 2m/Kt 0 I(k+1) '

However[15],
k/2
F(k+1)=4 F[(k+1)/2]1“(1+k/2). (330
Jr
Further,
sinf(k+1)7/2]=0, k odd,
=(—1)¥2 k even.
(3.3)

Substituting these relations into E¢3.29, and lettingn
=k/2, we obtain

()= i (—a/VKHO)ZT[(2n+1)/2](—1)"
_zwﬂ =0 (H'T[(2n+1)/20(n+1)
(3.32
Simplifying this, we finally obtain
- 2/4J— Kt)"
f(t)=
0= 3,
a
= exf — a?/4Kt]. (3.33

JAmKt3

This is the expected inverse Gaussian distribution for the
FPT density function of the ordinary Brownian motion with

zero drift[19].

Next we consider the asymptotic behavior of the FPT dis-

tribution for large values ot. Refer to Eq.(3.22. Let z
=al/(Kt”)Y2 It is known that[10,27], for small z,H1Y(2)

~|z|P1/Bi=1, sinceb;=0 andB;=1. Therefore, the FPT
distribution f(t), for larget, is characterized by the power
law relation
f(t)~t 1772 (3.39

which becomes the well known 3/2 scaling law for the
ordinary Brownian motion. We make two comments. First,
the above power law behavior was observed earlier by Bal-
akrishnan 28] for subdiffusive processes {0y<1) using a
different method. Using our method the same scaling law is
shown also to be applicable to superdiffusive processes. Sec-
ond, from Eq.(3.34), we see that the mean first passage time
and all higher moments of the FPT distribution are undefined
for 0< y<2.

Next we consider the asymptotic behavior fft) for
small t [i.e., large z where z=a/(Kt")¥3. It is known
[10,27 that, for largez,

H1%2)~ Bz ex — uCYz!], (3.39
where
q p
a=2, bj— > aj+(p—q+1)/2,
=1 =1
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P q
B=(2m)@ P EC ] (a7t oT ] By~

In our casep=1,q=1,a;=1—v/2, A;=v/2,b,;=0, and
B,=1. Therefore, for large,

1O a (1—yl2,y12)
M (ktn¥2| (0,0)
(y-1)/(2-9)
- ;(Z) Ay-1)i(2=7)
V(2-y)m\2
_ yI(2—7)
xex;{—%(%) zz’(zy)}. (3.39

Substituting this into the expression fift) [cf. Eq.(3.22],
for smallt we obtain

r d
MO~ a2 exﬁ{ _ty/(Z—y)l - (337

where

— / —
ay (y=1)/(2—y)

_ay
"~ ¢4Kw<2—y>(2JR

2—y }/) Y(2=v[ g
2 JK

2
For 0<+y<2, bothr andd are greater than zero. Therefore,
f(t) is exponentially decaying for smatl Note that fory
=1 (ordinary Brownian motioy) the above expression re-
duces to

2/(2~)

d:

f(t)~ exd —a?/4Kt]. (3.38

a
JaAmKts
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FIG. 2. (@) Comparison of the theoretical FPT distributiolid
line) with the distribution(dashed ling obtained by numerically
simulating the underlying CTRW process for a Levy type anoma-
lous diffusion (with y=0.5) that is not close to the generalized
diffusion limit (r=10"2). (b) Same comparison as above, but
closer to the generalized diffusion limit-€ 10 %).

sity function obtained theoretically from E.22 is com-
pared with the FPT density function obtained numerically

In this case, the asymptotic expression turns out to be thesing ten million realizations of the underlying stochastic

exact expression.
We can determine thievalue wheref (t) attains its maxi-
mum value from the above expression. We obtain

o Zd_y @2=nly (3.39
max 4— y '
For ordinary Brownian motionx=1),
2d a2
tmangz W (34@

process. If we take a large value f8¢(=0.01), the agreement

is not that goodsee Fig. 2a)], since we are not yet close to
the generalized diffusion limit. If, however, we takeo be

10 4, the numerical simulation is in excellent agreement
with the theoretical predictiofsee Fig. 20)]. The agreement
becomes better asand o become smaller, approaching the
generalized diffusion limit.

The above statement can be quantified as follows. Con-
sider the Kullback-Leibler information criteriom29,3(d,
which gives a quantitative measure of how “far apart” a
given approximate density functioi (t) is from the exact
density functionf (t). The Kullback-Leibler information cri-

The theoretical prediction for the full FPT density function terion is defined as

given in Eq.(3.22 is verified by numerically simulating the

underlying CTRW process characterized by the probability

density function¢(y,u) [cf. Eq. (2.5]. For the sake of nu-

= f(t)
+<L(f,fl)=f0 dtf (tlogr .

(3.41

merical efficiency, we replace the waiting time distribution

(e—1)/7(1+u/7)® in ¢(y,u) by the Pareto density func- This is always greater than or equal to zero, and is equal to
tion [16] [which is equal to zero foru<s and (@  zero if and only iff ;(t) agrees exactly withi(t). The devia-
—1)7* Yu® for u=r]. The parameter values are chosen agion away from zero quantifies the disagreement between the
follows: y=0.5,a=1.0, andK=0.1. In Fig. 2, the FPT den- two density functions.
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0.035 T T T 2:2y—2

s s’
\2=A2-4p="2 2 +4>0. (3.49

0.03 |-

Therefore, two independent solutions of the homogeneous
equation corresponding to E(3.43 are given by[32]

ol
o
R
o

01(X,8)=exdX(A—A)/2], qx(X,s)=exgx(—A—A)/2].
(3.49

Consequently, the general solution of £§.43, satisfying
all the boundary and initial conditiofisf. Eq.(3.2)], is given

by

o
2
3

Kullback-Leibler Information Criterion
o
<Q
N

0.01 |-

. . . y—1
10 100 1000 10000 Q(X,S) — SK)\ e*A(Xfa)/Z[efxleaVZ_ ef)\(x+a)/2:|_

Vs
FIG. 3. Plot of the Kullback-Leibler information criterion (3.47)

against 1. To obtain the Laplace transform of the FPT density func-

) _ tion, we take the Laplace transform of E&.3) to obtain
In our case, we také,(t) to be the approximate numeri-

cally simulated FPT density function for various valuesrof o o

(the value ofo is correspondingly varied to keel§ con- F(S):_Sfo dx g(x,s)+ fo dxW(x,0). (3.48
stan). The plot of the Kullback-Leibler information criterion

for different values of 1 is given in Fig. 3. Asr decreases Here we have used the fact that Laplace transform of
(ie., as the generalized diffusion limit is approachetie  gw(x,t)/dt is given by [13] sq(x,s)—W(x,0). Since
Kullback-Leibler information criterion also decreases. W(x,0)= 8(x—a) [cf. Eq.(3.2)], we obtain

0.005
1

o)

B. Nonzero drift case F(s)= 1_Sf dx g(x,s). (3.49
In this section, we consider the first passage time problem 0
for Levy type anomalous diffusion with drift. An explicit - :
solution for the FPT density function is not possible in thisSUbStItUtIng forg(x,s) from Eq. (347, we obtain
case. We obtain the Laplace transform of the FPT density AN
function (the so-called “moment generating functiofi31]). F(s)=1— H[ f dx e A-a)2g=A(a=x)/2
Using this, we obtain the mean and variance of the first pas- 0

sage time distribution. For regular Brownian motior ( w
=1), the inverse Laplace transform of the moment generat- —J dx g Ax-a2g=h(x-a)i2
ing function can be explicitly carried out to give the standard a
results. sY [
Taking the Laplace transform of E¢R.33), we obtain + ﬁf dx e Ax=a)2g=Mx+a)/2
0
2
q(x,s)— W(x,0) = 5 a—q(x,s)— ® iq(x,s), The integrals can be easily evaluated, to finally divpon
S s? 9x? S dXx using Eq.(3.49)]
(3.42
. aus’ ! u’s?r 2 g7
whereq(x,s) is the Laplace transform diV(x,t). Here we F(s)=exg — 2K —-a IK2 Pk
have again applied the res(k8] that the Laplace transform (3.50
of oD; "W(x,t) is q(x,s)/s”. The above equation can be '
rewritten as For 0<y<1, F(s) is not a completely monotone func-
tion [14]. That is, it does not satisfy the following conditions:
@ d st
—4(X%,8)+A—=q(x,5) +BA(X,5) = — ——d(x~a), dF"(s)
dX X (=" =0, for s=0, F(0)=1. (3.5)
(3.43 ds"
where HenceF(s) is not a Laplace transform of a probability den-
sity function. The physical reason for this is not yet under-
1 stood. For & y<<2, we have not been able to prove rigor-
us” s . . .
A= — ., B=——. (3.44 ously thatF, (s) is a completely monotonic function.
K K However, we have calculated the first hundred derivatives of

F, .(s) using the symbolic manipulation programaTH-
Sinces,K>0, we have EMATICA, and found that all of them satisfy Eq3.5J).
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Hence we conjecture th&(s) is the Laplace transform of a Consider the first term. The second derivativegé$) is
probability density function for & y<<2. Henceforth, we re- given by
strict ourselves to this parameter range.

First consider the case where the drift is toward the bar- > -3 2—
—1)(y—2)s” 4AKs?7
rier. This implies thatu <0, since in our formulation the d9(s) :|'“|(7 )(y=2)s ( - + 52
diffusive process starts at=a>0 and the barrier is ax d 2K 2
=0. In this case, the FPT density function can be written as oo\ —112
[cf. Eq.(3.50] _(y=D(2—y) 4Ks7
|uls 2
F(s)=e%99), (3.52 s
2K(2—y)2st 7 aks2 |72
where + ( 73) ( + 5
|l ©
pls”™t fuls? 4Ks?™7
909= "5~ 2K 1+ P (3.53  Expanding all terms, we obtain
The mean first passage time is given by d’g(s)  |ul(y—1)(y—2)s7°
(m--L asa -
ds |, ' Xi (-—1)"11.3...(2n—3) [ 4Kz~ 7\"
— 2
From Egs.(3.52 and(3.53, we have n=2 2"n! M
(y=D(2-y) 2 (-1"-3---(2n—-1)
S — n
dF(s) | |u|(y—1)s* %a 4Ks?>Y [u -t 2!
- 1=y 1+ 2-y\N 241~
ds 2K w? » 4Ks="7 +2K(2—7) s
4K 27| "M pu? |uf?
2—vy)al 1+ 0
(2= 2 o s 3 (FDM3 @0t 4Ks? 7\ "
] e 359 2! 2

We need to find the limiting value of the above expression as\fter considerable manipulation, this can be rewritten as
s—0. First considere?¥®. As s—0, we can expand the

square root in Eq(3.53 to give d?g(s) | 2K(2- st

s Ks¥7 d |l
g(S):_m‘FW—'". (356)
) X S n(2—7)+(3—7)}(—1)“1~3-~'(2n+1)
Henceg(s)—0 ass—0. Consequentlye?9® -1 ass—0. n=0 (n+2) 2"n!
Performing similar expansions for the other terms in Eqg. N
(3.55, we finally obtain[cf. Eq. (3.54)] 4Ks?™Y
X 2
a I
(Ty= Tal (3.57
K Thus the first term in Eq(3.60) is given by
Note that the mean first passage time is independent of
The variance is obtained as follows: d?g(s) 2Ka(2—y)st™”
a—eag(5)=—3eag(s)
Var(T)=(T2)—(T)2. (3.59 ds? |l
Therefore, we need to evalua{€?). This is given by % n(2—y+G3- 7)}
n=0 (n+2)
, d%F(s) ]
(T9= e, (3.59 (=1)"-3---(2n+1) [ 4K
°70 s 2! u?
Now (3.6
2 2 2
dF(s) = ad 9(s) +(adg(s)) g2 (3,69 Fory=1, the case of ordinary Brownian motion, from the
ds? ds? ds above equation we obtain
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d2g(s) o2a equation, and we recover the expected inverse Gaussian den-
a—0— e =—1. (3.62  sity [19] for the FPT density function of Brownian motion
ds’ o 14l with drift.

Here we have also used the fact that /2 for y=1. On
the other hand, for £ y<2, ass—0, the prefactor multi- ) _ _ ] _
plying the sum in Eq(3.61) diverges, whereas the sum itself N this section, we consider the first passage time problem
is finite and bounded away from zero. Consequently, for 1for Levy type anomalous diffusion with zero drift and ab-

C. Absorbing barriers at x=—b and x=a

< y<2 the first term in Eq(3.60 diverges as—O0. sorbing barriers placed at=—b andx=a. We obtain an
Next we consider the second term in E§.60. We al-  explicit solution for the first passage time density.
ready know the limiting behavior of this term forsly<?2, The FFPE to be solved is given in E@.4). The bound-

as s—0, from our earlier analysis for mean first passage?’y and initial conditions become

time, namely, W(—b,HH=W(a,)=0, W(x,0=5x). (3.70
2

2
(dg(s)) eaols| & (3.63  We solve the FFPE using the method of separation of vari-
ds o M2 ' ables[21]. Let W(x,t)=X(x)T(t). Substituting in Eq(3.4),
we obtain
Substituting the above results into E®.59, for y=1 we
obtain X(X)T(t) = X(x)= oDy "T(HKX"(x), (3.71
ola a2 where X”(x) denotes the second derivative ¥{x) with
(T?)= et (3.69 respect tax. Separating out the variables and introducing the
ul® w separation constamnt, we obtain
Therefore[cf. Eq. (3.58)], KX"(X) = AX(X) 3.72
Var(T)=o?al|u|? (365  and
for y=1. For 1<y<2, the first term_in _Eq(3.60) diverges T(t)—1=\ (D; "T(1). (3.73
ass—0, whereas the second term is finite. Therefdfie,)
diverges. Hence the variance also diverges. The solution of Eq(3.72), with the given boundary condi-

Next consider the case where the drift is away from thejons is given by
barrier. This implies thag.>0 in our formulation. Now the

FPT density function can be written as in E§.52), where In@(b+Xx)
Xn(X)=Ansin —————|, (3.79
(a+b)
_|plst fpls 4Ks*"7
g(S)—_ 2K - 2K 1+ MZ ' (366) with
Performing the same analysis as above, it is easily seen that No= — n’m? K _192 37
the mean and variance diverge fosly<2. n— (a+b)? n=Le. ... (3879

For y=1, the Laplace transform of the first passage time
density function reduces {ef. Eq.(3.50] To solve Eq.(3.73, we take its Laplace transform to obtain
(introducing the subscript coming fromh )

a
F(s)zexp[— o (ot Ju?+4Ks)|. (3.67 Lo
To(9) = 5= Ta(s). (3.79
Now the inverse Laplace transform of exp(z\/g),azo, is S
13
[13] Here we have used the fact that the Laplace transform of
o , oD{ ¥T(t) is T(s)/s”. Solving forT,(s), we obtain
exp(— a“/4t). 3.6
N o ) (3.68 .
] ) ) ) Ta(8)= ———7—. (3.77
Using this result, we can easily perform the inverse Laplace S—Aps™ 7

transform of Eq.(3.67), to obtain ) ) ) )
Taking the inverse Laplace transfofi@2], we finally obtain

(at+ub)?

a
ex
JamKt3 F{ 4Kt

f(t)=

}, a>0, t>0.
(3.69

We comment that, if the starting point of the diffusion is whereE (2) is the Mittag-Leffler function introduced earlier
chosen aix(0)=0, a negativex will be used in the above [cf. Eq.(3.8)].

Tn(t) = Ey

n272
_ Y
o ] (3.78



PRE 62

Combining the solutions for space and time parts, we ob-

tain

nw(b+Xx) nmw

(at+b)

o~

2
Kt7|.

W(x,t)=nzl Aqsin PYESE
(3.79

The coefficientsA,, are determined by imposing the initial
conditionW(x,0)= &(x). This gives us

A 2 | nwb 38
"“arb " (atb)| (380
Hence
2 [ nab ] [n@(b+x)
WOGH= 2 258N Gy sr{ (a+b)
n211'2

XE,| — Kt?|. 3.8
T (a+tb)? 1 o8

From Eq.(3.3), the FPT density function is given by

dra
f(t)=—af_bde(x,t). (3.82

Substituting forW(x,t) in this equation, we obtain

(2n+1)wb

fO="5 [ 42, (2n+1)77r{ (a+b) }
(2n+1)%7? K (3.83
T (a+b)? ' '
Here we have used the fact that
fa _|nm(b+x)| 2(a+b) # n is odd
7b5| @+b) | nm if n is odd,
=0 if n iseven.

To evaluate the derivative in Ed3.83, we write the
Mittag-Leffler function in terms of théd function using Eq.

(3.1D:

45 1 [(2n+1)wb]d
f=-2 n§=:0 2n+ 1°Ir{ (a+b) }a
o @n+DPa? | 1(0.0) )
12 (a+b)2 (011)1 (0!7) '
(3.84

However[10]
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d (2n+1)2 P CEY )
dt (a+b)? (0,9, (0,y)
1 (2n+1)2 2 0y, (01 )
Tt (a+b)? 0.0, (07, (1)
- Hﬁ((znﬂ)2 = oY )
ot (a+b)? (0,1, (L)

In the last step, we have used properties 1 and B &inc-
tions[cf. the Appendi}. From the series expansion of thie
function given in Eq.(3.10, it can be shown after some
manipulation that

i

whereE, 4(2) is the generalized Mittag-Leffler functid@2]

0.1

(0 1) _ZEy,y(_Z)v

(1,7)) B (389

*© k

Eap(2)= 2

P /3+k ) a,B>0.

(3.89

Using this in the expression fdi(t), we obtain

_AmKE” v (2n+1)wb
bR Z (2n+1)5|r{—(a+b) }

(2n+1)%472

X E
(a+b)?

Kt?|. (3.87)

VY

For a regular Brownian motiony=1), we obtain

f(t)= 2 (2n+1)sin

(2n+1)7rb}

(a +b2 (a+b)

o

IV. CONCLUSIONS

(2n+1)%4?

(a+b)? (588

We studied the first passage tirffePT) problem for Levy
type anomalous diffusion. We obtained the FPT distribution
using the recently formulated fractional Fokker-Planck equa-
tion. We derived an explicit expression for the FPT distribu-
tion in terms of Fox o functions when the diffusion has
zero drift. The theoretical result was verified by numerically
simulating the underlying continuous time random walk.
When the drift is nonzero, we obtained an analytic expres-
sion for the Laplace transform of the FPT distribution. This
was used to calculate the mean and variance of the FPT
distribution. Finally, for the case of two absorbing barriers at
finite distances from the origin, we expressed the FPT distri-
bution in terms of a power series. In all of the above situa-
tions, the known results for ordinary diffusia@rownian
motion) were obtained as special cases of our more general
results.
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Property 4.
APPENDIX: PROPERTIES OF H FUNCTIONS
1

a.p\ z

— Hn,m(

The H function has the following remarkable properties HB’;Q(Z
[10] which we will use later.

Property 1. The H function is symmetric in
the pairs a.,.A1), ....@,,A), likewise
(an+1,An41), - - -, @p,Ap); in (by,By), ... ,(bn,By) and Property 5.For k>0,
in (b 1,Bma), - -, (0g,By).

Property 2.Providedn=1 andq>m,

1 m,n

(aliAl)a (a21A2)1 Tty (ap,Ap)) EHp’q
(by,B1), B (bqflanfl)u (a;,A1)

Hg‘g( z
(a2,A2), -, (ap,Ap) ) Property 6.
p-19-1 '

:Hm,nfl (Z
(blvBl)! T, (bq—lqu—l)

(A1)
z"H g‘; z

(@ Apj-1,..., p)

Property 3.Providedm=2 andp>n, (b.B)i-1.
Hm’n(z (allAl)! Ty (ap—l!Ap—l)v (bl!Bl))
p.q

(blvBl)1 (b2182)1 T, (bquq)

(@FpA; A} -1

:Hm'“(z
P97 (bj+pB; ,Bj)j-1

""" p) . (A5)

..... q
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